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The so called “energy method” of analyzing the properties of difference equations is 
systematically applied to certain conventional representations of the prototype advection, 
vorticity and shallow water equations of geophysical flows. Conditions governing the 
boundedness of the solutions to the difference equations are derived and these are used 
to obtain suitable consistent formulations for the boundary conditions on open (purely 
geometric) fixed surfaces immersed in the fluid. Experiments conducted with the derived 
boundary conditions indicate that they do not engender boundary instabilities. In 
particular, successful results were obtained with the shallow water equations for both 
quasinondivergent and almost irrotational initial flow conditions. The results suggest 
that the energy method constitutes a viable and useful approach to the “open” boundary 
problem posed in some geophysical fluid flow studies. 

I. INTRODUCTION 

It is a matter of common experience that many of the apparent vagaries of both 
atmospheric and oceanic flows-for example, fronts, squall lines, polar lows, 
hurricanes and storm surges-are localized in space and time. Hence during the 
short term development of such phenomena, the spatial region of interest is a 
limited area of a much larger domain. The prediction of the flow field within the 
limited area poses a mixed initial-boundary value (IBV) problem. Some subset of 
the lateral boundaries of the limited area comprise open (purely geometric) fixed 
surfaces immersed in the fluid. The TBV problem is highlighted in the practical 
task of constructing regional weather prediction models and storm surge models 
for specific coastal regions. 

Examples of numerical IBV experiments conducted with finite-difference 
representation of the linear advection equations, the barotropic vorticity equation, 
the nonlinear shallow water equations and the full primitive equations of meteoro- 
logy, are given in [l-5]. The results of these particular experiments indicate that 
incorrect or over-specification of the lateral boundary conditions leads to spurious 
oscillations that propagate into the interior of the region. The growth of these 

398 
Copyright 0 1973 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



INITIAL-BOUNDARY VALUE FLOW PROBLEMS 399 

oscillations may eventually mask the development of the true solution. In these 
models, the spurious oscillations were either effectively suppressed by the applica- 
tion of filters or severe smoothing near the boundaries, or the region of integration 
was taken to be so large as to prevent the oscillations reaching the central region of 
interest within the desired forecast time. 

A probable source for these oscillations was pinpointed by Charney et al. [2] in 
their seminal paper on the integration of the barotropic vorticity equation. On the 
basis of the observation that conservative advective quantities impose constraints 
on the determination of the flow variables at outflow lateral boundaries, they 
suggested that only a minimum subset of the dependent variables (only the normal 
velocity in their case) should be externally specified at outflow points. Charney [6] 
also applied the argument to the shallow water equations, the so-called barotropic 
primitive equations, and concluded that the normal velocity should be externally 
specified everywhere on the boundary and potential vorticity at inflow points. 

Furthermore, in [6] a successful integration of the barotropic primitive equations 
was undertaken with these lateral boundary conditions. Other successful integra- 
tions have been obtained with the barotropic vorticity equation [7], the linear 
shallow water equations [8], and the barotropic primitive equations [9]. Again, in 
these studies only a minimum specification of variables was made at the lateral 
boundaries. To avoid external overspecification at outflow boundary points, the 
values of certain dependent variables must be ascertained from the interior values 
and the specified boundary variables. At outflow points these authors adopted 
ad hoc variations of the Lagrangian advection scheme (upstream difference in 
space and forward difference in time) for the conservative quantity or quantities. A 
criterion for assessing the usefulness of this scheme was the a posteriori verification 
of the “smooth” development of the computed flow. 

Studies of the linear advection equation [lo; 11, p. 1371 indicate forcibly that 
consistency of the finite difference representation with the continuous equations is 
not the only criterion governing the choice of schemes at outflow points. These 
analyses spotlight an aspect of the IBV problem associated with the difference 
equations, viz these equations may require more boundary conditions than are 
necessary for the corresponding differential equations. The formal development of 
a theory of difference approximations for the IBVproblem is now gathering momen- 
tum (see [12] and the references therein). 

In this paper we apply the energy method to certain conventional difference 
approximations of the IBV problem posed by the linear advection equation, the 
barotropic vorticity equation, and the nonlinear shallow water equations in open 
systems. The technique of using the energy method to establish suitable boundary 
conditions was advocated by Morton [13]. This suggestion was persued by 
Campbell [14] in a stability analysis of a difference scheme for the two dimensional 
Navier-Stokes equations in a closed system, while Elvius and Sundstrom [ 151 have 
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recently examined the IBV problem posed by the linearised shallow water equations 
in an open system. 

The present work bears the same spirit and tenor as that of Elvius and 
Sundstrom. In Section II, we outline the particular character of the mathematical 
problem under consideration. The discussion is developed from a study of the 
energy method applied to the differential equations and then extended in the 
succeeding section to the difference equations. We derive conditions governing the 
boundedness of the solutions of the difference equations and hence suggest suitable 
formulations for the lateral boundary conditions. Results of numerical experiments 
conducted with the derived, and other, boundary conditions, are reported in 
Section IV. 

II. OUTLINE OF THE MATHEMATKAL PROBLEM 

We study three mixed initial-boundary value problems. 

A. The Linear Advection Equation 

(au/at) + c aupx = 0, (14 

on the line segment 0 < x < 1 with 0 < t < 7 
Initial conditions are, 

4x, 0) = f(x), O<x:Gl 

Boundary conditions are 

and c is a positive constant. 

B. The Barotropic Vorticity Equation 

where 4 = #(x, y, t) is the stream function, f = f0 + /3y is the Coriolis parameter, 
and V2 and J denote the two-dimensional Laplacian and Jacobian, respectively. 

Initial conditions are 

in the area S given by (0 < x < G 0 < Y G I0 
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Boundary conditions are: 

normal velocity v . n (==a#/aS) be specified everywhere on curve C enclosing 
s; 

vorticity Vzz/ be specified at inflow points (v 1 n < 0) 

C. TAe Shallow Water Equations 

(a/at) v + (v . V) v + f(k A v) = -gVh 
(a/at) h + V * (hv) = 0 

where (v, h) denote the horizontal velocity vector and the height of the free surface 
of the flow of an inviscid, incompressible, and homogeneous fluid. Here g is the 
gravitational force (assumed constant) and V a horizontal vector operator. 

Initial conditions are 

and 
v(x, Y, 0) = vO(x, Y> 

h(x, Y, 0) = ho@, Y> 

for the areas given by (0 < x < L, 0 < y < W). 
Boundary conditions are the following. 
We consider two different sets of conditions for this case. 

Set A: Normal velocity (v . n) specified everywhere on curve C enclosing S, 
with the tangential velocity and height field specified at inflow points. 
Set B: A variable (v 9 n - 2( gh)li2} specified everywhere on C and the tangen- 
tial velocity specified at inflow points. 

We comment on the two sets of conditions later but first we apply the energy 
integral method to Eqs. (1) to obtain 

a 1 
- j +u” dx = - &c[u2(1, t) - ~~(0, t)] at 0 

a 
at jjs +(V2#)2 dS = - $, [(v . n) &(V2#)2] dC (2b) 

a 
t jjs Hh(u2 + u") + gh2} dS = - f, [( v . n){+h(U2 + u2) + gh2}] dC (2~) 

Equations (2) indicate that for each of these problems there exists a quadratic 
quantity that is increased (decreased) only by inflow (outflow) across the boundary 
of the region. 



To establish the uniqueness of solutions of these systems we can consider two 
solutions of the basic system and apply the energy integral method to the 
equation(s) determining the time development of the perturbation, or difference, 
between the two solutions. This method was applied by Sundstrom to the baro- 
tropic vorticity equation [16] and the linearized shallow water equations [ 171, while 
the author [18] applied the technique to the nonlinear system C and the baroclinic 
primitive equations. 

In the latter study the author suggested that the “set A” boundary conditions 
constitute a suitable set of lateral boundary conditions for system C. These bound- 
ary conditions yield a sufficient condition for uniqueness of a solution provided 
the velocity field possesses continuous derivatives. It is both pertinent and salutary 
to note that the proof of uniqueness is based on the assumption of the existence of 
the solution, and that the height field of the solution need not be continuous. 

In contradistinction it is shown in the appendix that the uniqueness of solutions 
of system C can also be established for the “set B” boundary conditions provided 
both the velocity and height fields possess continuous derivatives. (This result is a 
generalization of that obtained in [I 71 for the linear shallow water equations.) 
Clearly the set B boundary conditions are preferable on both mathematical and 
physical grounds. The conditions avoid a pseudo-over specification at inflow for 
almost all geophysical flow situations, and they also improve the treatment of 
outgoing gravity waves since they permit characteristic-type equations to be 
applied at both inflow and outflow boundary points. A comparison of the numerical 
experiments conducted with these two sets is made in the last section. 

The development of a satisfactory ‘energy method’ theory for difference approxi- 
mations to our three systems would entail deriving analog difference relationships 
to the differential relationships (2). Analogs of Eqs. (2) would express the bounded- 
ness of a suitable norm of the difference solution, while analogs of the perturbation 
energy integrals (e.g., Eq. (A3) in the Appendix) would be required to prove the 
computational stability of the difference schemes. Convergence of the schemes 
would be yet a further problem. 

We confine our attention primarily to the study of the boundedness of suitable 
norms of our difference systems. The main burden of the analysis is the design of 
consistent difference formulations at outflow boundary points that ensure that in 
the difference analogs to Eqs. (2) there is no spurious increase in the norm. We note 
that it is only the linear system A that boundedness automatically implies stability 
and convergence. However for low Mach number, closed IBV, flow simulations 
there is strong evidence [19,20] that a difference scheme satisfying a boundedness 
condition inhibits the particularly virulent form of nonlinear computational 
instability first isolated by Phillips [21]. 

Thus it is natural for us to choose schemes of this genre in our study. These 
schemes were developed by Arakawa [22] and Lilly [23], and their use has been 



INITIAL-BOUNDARY VALUE FLOW PROBLEMS 403 

principally confined to long term integrations of global atmospheric and oceanic 
circulations and not to limited area models. However, in the field of regional 
weather prediction it is envisaged that global, coarse mesh models will provide the 
boundary data for regional, fine mesh models. Thus limited area models may also 
be of this type in the future since a high degree of model-model compatibility may 
prove to be desirable. 

To facilitate the description of the difference equations used in this study we 
adopt the following notational scheme for sum and difference operators, 

q= = gq$x + *AZ) + cp(x - $AZ)} (3) 
s&J = q(x + &AZ) - 9(x - &AZ) (4) 

With (A) and (At) denoting the discrete spatial and temporal difference increments, 
our difference approximations to the flux forms of Eqs. (1) take the following form 

System A. 
&it = -(c At/AZ) S,u”. (5) 

The difference scheme is applied at every interior grid point of a mesh of uniform 
spacing that spans the range of x, such that 

x = i(AZ), i=o,z and Z(dZ) = I 

System B. 

&if = -(At/AZ){S,(u”j”) + Sy(21?jV)} (6) 
where 

u = -&TV, v = s,(r 

and 7 = (S,,lc, + S,,$) +.f, is the absolute vorticity. This equation is applied at 
every interior grid point of an uniform rectangular mesh spanning the flow region 
with 

x = (i - l/2) Al, i= 1,I 
y = (j - l/2) Al, j= l,Jand(I- l)Al= L,(J- l)Al= W. 

System C. 

S&i’ = -(At/Al){S,(hu*ux) + S,(h;;)} + 2At{fhv - +(A&l gh Ssx}, (7a) 

S,i;;;’ = -(At/A1)(S,(%?ix) + S,(hu~)} - 2At{fhu + $(A&l gh S,h’}, (7b) 

S,h’ = -(At/Al)(S&x + S,hvY}. (8) 
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Again these difference equations are applied at every interior grid point of a 
uniform rectangular mesh with 

x = i(Al), i = 0, I 

Y = jm j=O,J and (I - 1) Al = L, (J - 1) A/ r= 14’. 

Equation (5) is the usual centred time and space difference approximation to the 
linear advection equation. Arakawa [20,22] and Lilly [23] have conducted theoreti- 
cal and numerical studies of the difference schemes of systems B and C. System C 
is the barotropic primitive equation analog of the scheme used by Smagorinsky 
et al. [I 71 and others in studying global scale baroclinic systems. 

III. DERIVATION OF BOUNDEDNESS CONDITIONS 

The basic ideas and philosophy of the so-called energy method of analyzing the 
properties of difference schemes has been expounded elsewhere [I 11, and will not 
be presented here. We simply note that hereafter the term “energy” will refer to 
some specified norm of the solution vector of the particular difference scheme 
under consideration. The three systems will be treated separately. 

System A. 

An examination of this system with the energy method is a useful prelude to the 
study of the other two systems, and indeed averts the proleptic adoption of a 
boundary scheme proposed in [I 1, p. 1401 in a similar treatment of the same 
problem. 

We write Eq. (5) in the form, 

.;+l = $’ - oc A,#, 

where 

a = (c At/Al), and A,+P = u;,~ - 4-1, 

and define an energy S” by, 

s” = I/ ZP II2 + 11 u”+l /I2 -t D~(zP+~, A,zP) 

- a(U,nUln_:l - UgnU:+l) - (1/2){(U;“_,)2 + (U;?;)“} 

(9) 

(10) 

where 

and 
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It can then be deduced that 

and using the appropriate summation by parts formula this may be reduced to 

S” - 9-l = -auln(u~~; + 24~~;) + B” - g{(u;?;)2 - (u~I;)2>, (11) 

where B” = ~u~~(u;+~ + uyP1) denotes the contribution to the change in S-S--l 
arising from the inflow boundary source. 

We now choose to represent the value of uin at the boundary point i = I by 

UI 
n = $2:’ + $1; - u;-“_, . (12) 

Eliminating u:-~ from the form of Eq. (9) at point i = I - 1 and Eq. (12) yields 

Zau,” = -(l ~ a) u;“-:’ t (1 + cl!) MI”--:. 

Substituting this relationship into Eq. (11) leads to 

S” - 9-l = -(I /2) ct(u;y + u:&y2. (13) 

We now note the inequality 

(zP+l, Ll,u”) = 11 Un+l II2 + /I un II2 + U,%;~~ - UgnU;+1 - (l/2){M-J2 + MY;)“>. 

Hence it follows from Eq. (10) that 

(1 - 4 Un+l II2 + I 1 un y”) ,( S” < (1 + CY)(il zP+l ‘12 + /I 2.P II”). (14) 

Thus from relations (13) and (14) we deduce that 

II un !I2 < (1 - a)-’ /(I + 4Cli u1 lj2 + II u” !I”) + c (AN + BN)/ (15) 
N=l,Tl 

where 

A” = -(l/2) a(u;l_:l + U:::)“. 

Inequality (15) is the nearest finite difference analog we seek to the corresponding 
differential relationship, Eq. (2a). For 01 -=c 1 it shows that the square of the norm, 
// u” 112, is bounded by its initial values, i.e., (11 u1 II2 + jj u” lj2), and the difference 
between the boundary source terms, BN, and the sink terms AN. 
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This concludes our proof of boundedness for System A, but the following 
comments are also pertinent to the discussion of the 1BV problem. The difference 
equation at the boundary mesh point is given by 

u;“-:’ = 2.4;:; - 0+4;2; + 24;:; - 22&J. (16) 

This is a consistent difference approximation to the differential equation at the 
open boundary. Moreover since the difference Eq. (9) can support solutions on two 
independent lattices for a purely initial value problem, it is natural in the IBV 
problem to consider a scheme with the form of Eq. (16) to prevent coupling of these 
lattices at the outflow boundary. 

In the next section we indicate that a failure to satisfy the consistency conditions 
at the outflow point permits the growth of spurious oscillations at the boundary. 
We also note that, unlike the second order scheme of Eq. (9), the difference Eq. (16) 
is correct only to order @I) and corresponds to adding an effective viscosity term 
to the differential equation with the viscosity coefficient taking the value 

(l/2) c(AI)( 1 - a”). 

Gustafsson [24] has, however, justified the adoption of a difference formulation on 
the boundary with an accuracy that is one order lower than that for the interior 
scheme. 

System B. 

The inner product of Eq. (6) with (qn+r + r”-‘) yields 

// 7]“+1 j12 - j/ 7p-1)12 = -p((qQ+l + 7p-l), 7”) 

where 

yn = {8&FX, ip”) + 8u(FY, Gjq}, 

p = 2At/AI, 

and now 

CT2 *) = C 1 Vi&ii 
&L-l j=l.I--1 

with 

We define an energy by 

S” = II p1 II2 + II rln II2 + pL(qn+l, r”> + p 1 (A” + m (17) 
i,i 
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where Ci,j A” and 2i.i B” denotes the contribution to S” from outflow and inflow 
boundary points, respectively. The component of Ci,j A” at a point (I - 1, j) has 
the form 

with similar contributions from the other outflow boundary points. It follows from 
(17) and the summation by parts formula that 

S” - p-1 = -p(y)“-1, y n> _ p<vn, r+‘> + p C (A” - All-l + B” - B”-l). 
i.J 

(18) 

To proceed further we require some inequality relations for the inner product term 
in Eqs. (17) and (18). For clarity we develop below only the x-component of these 
relations. 

(r) a+1 ) yn)ocomp = (qn+l, {zPXX szr)nx + S~iFqq> 
(19) 

= (7p+l, {(l/2)(;“;2” + u) s,r”” + 63q(1/2) ?1”” + rl%). 

Here we have used successively the following operator identities, 

and 
-Ix = (1/2)(l52x + v). g, 

Now since, 
--Y s,iF = -S&” ) 

we omit the last term in Eq. (19) and in the counterpart term in the y component 
equation. The remaining terms are rearranged in the form, 

Application of the Cauchy-Schwartz inequality then leads to 

I VI (II ~“+l II2 + II qn II”) + c (A” + P), (20) 
i.j 

(77 nt1 3 r”> rcomp d (l/2) 

where 

I VI = yx(l uij I, I uij I>. 
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Similar tedious algebraic manipulations yield the inequality 

-(T, F~~cornp - (rl”-l3 V~~~cOrn~ 

< (l/2) I d”V i (11 71” II2 -I- 11 qndl jj2 + C (A’” - B’“), 

where 

(21) 

; d” V / = mja# 1 IA: - z&’ I, j L$ - UC-’ I), 
> , 

and x A’” and C B’” retain their usual notational interpretations, with 

Inserting inequality (21) and the y-component counterpart inequality in Eq. (18) 
leads to 

S” 

where 

with 

Moreover using inequality (20) with Eq. (17) we deduce that 

(1 - a)(11 7p+l II2 + I! qn I!“) < S” < (1 + 4(ll q+l II2 + II rln 112), 

where 
a=pl VI. 

From inequalities (22) and (24) we obtain the boundedness relation 

II 77” /I2 < (1 - w 10 + ol)(l + 4” (II rll II2 + II r1O II”) 

+ 1 p+n 
N 

(x M*n + B*T)/ 
i,j 

(22) 

(23) 

(24) 

(25) 

where 

E = [I + (1 - CY-’ rnzx(I d”l/ I)]. 
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Inequality (25) shows that the difference scheme is suitably bounded provided 

a:<1 and /c PLE~-~ ic A*“j 1 < 0. 
N i.j 

The first condition is of purely practical significance, while it follows from Eq. (23) 
that the second will be satisfied at outflow points if 

when 
(Uln + z&l) > 0. 

We again adopt the approximation 

(27) 

and we note that it yields a consistent difference approximation to Eq. (16) at the 
first interior mesh point. 
The normal velocity is to be specified a priori, and hence relation (27) is satisfied 
when the boundaries are placed midway between the mesh points. This particular 
location of the boundaries implies the Poisson equation for the stream function 
must be solved subject to mixed Dirichlet-Neumann boundary conditions. 

We do not attempt rigorously to establish the validity of (26). However, we note 
that its validity is readily monitored in a computation. It is also helpful to examine 
the nature of the physical problem under consideration. The barotropic vorticity 
equation, Eq. (16), is a useful means of representing large scale transient features of 
the atmospheric circulation, and on this spatial scale the absolute vorticity, 7, is 
generally positive. Thus we anticipate that relation (26) will usually be satisfied if 
the scale of the vorticity pattern is much larger than the mesh length throughout the 
integration period. 

System C 

Suitable inner product operations on Eqs. (7) and (8) yield 

- 

+ 
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v = gk u = pi, v = pv, 

p = 2At/AI, w = 2(At)J 

and 

yn = 6,(UT) + S,( VYiiY), 
Bn = 6,. UxVx) -i- a,( V’fi “), 
u” = 6,( 0”) + 6,( V”). 

We define the energy Sn, 

Sn = II Un+l II2 + II U” Ii2 + II Vn+l II2 + il V” II2 + c2Q yn+l II2 + II pp” II21 

+ /A( un+1, y”) + p( un+1, qP s,px> - w<un+1, P) 

+ p( vn+1, tP> + p( vn+1, cp” &/y,ny> + w( vn+1, uq 

+ pcB(p+l, 0”) + I* 1 (A” + B”). 
i.j 

(28) 

Again, C An and C B” retain their usual notational significance with 

A” I,-l,j = -(1/4){Uln_:lu~“(U,” $- U;“_,) + V,“_:‘DI~(UI~ + U,“_,) 

+ lJ~~Ul”_,UI” + v~;v~“_,v,” + 2Ul”_:‘&o;” + 4c2q$zy U,“}, 

and c2 = gH, the value of the height H being left unspecified for the moment. 
From Eq. (23) it can be deduced that 

(1 - 4(II Un+l !I2 + II U” II2 + II Pfl /I2 + I1 V” /I2 + c2(li q+l II2 + II q” II”)) 

< s* 

< (1 + Cx)(jI un+1 I(2 + II u” II2 + /I Vn+l II2 + I/ V” /I2 + C”{l/ @+l II2 + II v” II”)) 
’ (29) 

where 

And, furthermore, 

Sn - P-l < A*(]/ iP+l /I2 + II U” /I2 + II Pi1 Ii2 + II V” I2 + ~“{ll yn+l II2 + II 9” II”>> 

+ p C (A*n + B*“) (30) 
i.j 
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with 

and d* is the now customary positive definate maximum of some subset of the 
difference variables. 

The abysmal algebra required to establish inequalities (29) and (30) is not 
reproduced here. As for system B, these inequalities suffice to show that our 
difference scheme is suitably bounded provided 01 < 1 and the outflow term, 
,4*” IIUISj is negative definite. The first condition effectively constraints the 
unpsecified height H to a range such that 0 < gH < maxi,j,N (&. To examine 
A *n lIPi ,i we must introduce our computational outflow conditions. 

It was shown in the appendix that the set B lateral boundary conditions are 
sufficient conditions for the uniqueness of solutions of the continuous equations 
and are also inter alia the lateral boundary conditions we must endeavor to satisfy 
with the difference equations. In practice there may be operational, numerical or 
computational constraints that militate against the strict adherence to the mini- 
mum subset specification but any overspecification must be examined with caution. 
For the problem at hand, the results for system A can be readily extended to cover 
the linear equations of system C written in characteristic form. However, the 
set B boundary conditions are not amenable to theoretical examination with our 
choice of difference representation for the nonlinear equations. We are thus forced 
to resort to an investigation of the outflow boundary points with the set A con- 
ditions, and concomitantly acknowledge that spurious effects might be generated 
at inflow for a nontrivial overspecification of the dependent variables. 

We adopt the following approximations at outflow, 

and then regroup the terms in (31): 
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If the mesh boundary is placed at i == (I - I), then Ui;l_l,i is specified for all II. When 
there is outflow, at (I - 1) for three successive time steps, (n ~~ 1: II, 17 .-~ I) then, 
noting that c$Y,~ is positive, we infer that ,4*n Il--l,j is certainly negative definite if 

Ui;"j > 0, 

and 

Order of magnitude considerations indicate that these conditions are usually 
satisfied in geophysical flow applications if the spatial scale of the motion is much 
larger than the computational mesh length. 

IV. NUMERICAL EXPERIMENTS 

To test the outflow differencing schemes proposed in the previous section three 
sets of experiments were carried out with the linear advection equation, and the 
one- and two-dimensional shallow water equations. For comparison, various 
other outflow schemes were also tested in these sets of experiments. 

(a) Linear Advection Equation 

With the difference scheme of Eq. (9) applied at interior points experiments were 
undertaken with following outflow schemes: 

(3) qn = (l/2)(24;“_:’ -i- uE& 

(4) z/In = 22&r - uyp”_, . 

Gustafsson et al. [25] successfully constructed a stability theory for the Lagrangian 
advection scheme 2 based upon an extension of the Ryabenkii-Godounow condi- 
tion to IBV problems. Scheme 3 was proposed in [ll], but it is salutary to note that 
it does not satisfy the consistency condition. The linear spatial extrapolation 
scheme 4 is consistent, but its instability has been demonstrated in [lo, 1 I]. 

Experiments were undertaken for cy. = (0.75, 0.5) and I = 31 with two initial 
states comprising a sinusoidal wave of wavenumber 2 and a wedge shaped con- 
figuration. Schemes 3 and 4 were unsatisfactory. Both schemes produced large 
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amplitude error fiedls u’(= U,,,,,,t - ~~~~~~~~~~~~~ Some of the results obtained 
with schemes 1 and 2 with the sinusoidal wave and with 01 = .75 are depicted in 
Fig. 1. The initial field, U, and the error field, u’, of the computed solution after a 

NON-DIMENSIONAL LENGTH 

a b 

FIG. 1. (a) u field at t = 0 (solid line) and t = 24 (At) (dashed line); (b) u’ field for scheme 1 
(solid line) and scheme 2 (0) at t = 24 (At). 

time 24(dt) are shown, together with the corresponding correct u field. A measure 
of the effect of the boundary formulation as opposed to the errors due solely to the 
interior differencing scheme is obtained by comparing the U’ field in the neigh- 
borhood of x = 0 and x = 1. There is a marked two-grid increment wave in the 
error field of scheme 1, but there is no other significant difference between the two 
schemes. 

(b) One dimensional shallow water equations 

The one dimensional form of Eqs. (7) and (8) were integrated for initial quiescent 
conditions with a hump of water in a limited portion of the flow region and an 
uniform height field elsewhere. Wall boundary conditions were placed at i = 0 
and below we present a catalog of the schemes tested at the i = Z - 1 boundary 
for time level n. 

Boundary Scheme Difference Formulation 

(la) Set A. Specify: u;n_:‘, $;T; (at inflow), 
It;?;, u; = u;--:’ + u;-;l - u;-, (at outflow), 

(lb) Set A. Specify: ?l+1 
UI-1, fP,"_:' (at inflow), 

4% VI-1 n+l = VT-1 - &@7;1 - u;,> (at outflow). 

581/13/3-8 
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(2) Set B. Specify (U - 2c)Fn_:1 and calculate (U + 2~)::: with a centered time and 
space approximation of 

(W)(u + 2c) = -64 + c)(Vx)(u + 2c), 

and assume 

(u + 2c),” = (u + 2c),“_f,l + (24 + 2c)l”_;’ - (24 + 2c)L. 

(3) Buffer Zone: Diffusive terms with the form 

and 
[Llt/(dZ)z]{2v S,,U”-1 + @zvx S,F”}, 

[At/(A1)2]{2v Se&-l + &VX &$=}, 

added to Eqs. (7a) and (8), respectively, in the region I < i < Z + 8 

Scheme la was suggested in the previous section. The semi implicit formulation 
enables an algorithm based upon Eq. (8) to be developed to compute 4::: . Scheme 
lb corresponds to the usual up-stream differencing technique. The third scheme 
represents a highly viscous buffer zone designed to, at least partially, absorb the 
energy of incoming gravity waves. 

The lateral boundary velocity and height fields required for schemes 1 and 2 were 
obtained by performing a separate integration over a considerably extended 
domain in the positive x direction. Moreover the data set from this integration was 
also adopted as the desired solution in the limited domain and thus formed a basis 
for the comparison of the various schemes. 

Dimensional equations were used in the experiments with .4t = 360 set 
AI = lo5 m, Z = 38, and the initial fields given by: 

u.0 = 0 t (i = 0, Z - I), 

@ = 5.1 + lo4 m2 s-2 (0 < i < 10, 30 < i < 37), 

= S.l{l + 0.2 sin[(i - 10) 4201) x lo4 m2 sec2 [elsewhere). 

Fig. 2 traces the time development of the geopotential height (4) and the error 
geopotential field (4’ = vcorr. - vCaic.) generated by schemes 1 and 2. The 
schemes behave satisfactorily with comparatively weak v’ fields. An encouragingly 
good result was obtained with scheme 2 when the value of (U - 2c),“_, was main- 
tained at its initial value corresponding to the quiescent conditions in the far field. 

For these particular initial conditions, and with v = 106m2 set-I, scheme 3 does 
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(b) 

Cd) 

, c 4 
0 9 I.9 27 36 0 9 18 27 36 

) 
(x x 10’) km 

FIG. 2. Development in time of the height field in the one-dimensional shallow water equa- 
tion. Geopotential field at (a) t = 0, 30dt and at (b) I = 60df. Geopotential error field at (c) 
t = 30dr and at (d) I = 60&, with scheme la (solid line) and scheme lb (0). Similarly, (e) and 
(f) depict geopotential error field at the same times with scheme 2 (solid line). The 0 points denote 
the error field obtained with scheme 2 and the a priori specification of a constant boundary 
value for (u - 2~). 

not succeed in damping the amplitude of the incident gravity waves sufficiently and 
spurious effects propogate into the region. 

(c) Two-Dimensional Shallow Water Equations 

Experiments were conducted with the full difference Eqs. (7) and (8). The fluid 
was assumed to be on a /?-plane and two radically different types of initialconditions 
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-a quasinondivergent flow and an almost irrotational flow-were used to test the 
lateral boundary schemes. The first type corresponded to the ,&plane equivalent of 
the usual Rossby-Haurwitz wave [26] with a uniform zonal flow and a super- 
imposed, large amplitude Rossby wave that drifted steadily eastward remaining 
virtually unchanged in structure over the integration period. In constrast, the 
initial state for the second type of flow was a centrally humped free surface in a 
otherwise quiescent fluid 

Lateral boundary conditions at (I - 1 ,j) for time level n were posed as follows: 

Boundary Scheme Difference Specification 

1. Set A. Specify cl ,n_:tj, #?tj, v;?:‘,~ (at inflow) 

Specify uF?& and assume 

2. Set B. Specify (U - 2~):::~ calculate (U + 2c)y?tj (at outflow and inflow) with 
a centred time and space approximation of 

&(u + 2c) = -(u + c)&(u + 2c) - 2's (u + 2c) - c g +fv 

Specify v;?& at inflow and calculate v;“-:‘,) at outflow as in scheme A. 

Similar treatment enables all other mesh boundary values to be calculated except 
for the four corner points. If the vector velocity is directed into the flow region at a 
corner point we specify v and h, otherwise we specify v and then to determine 
q~y?t~~., we assume 

and 

%,.I = Vl”-:tJ-, + v;L;t,-, - by,,,-, . 

Once again the required lateral boundary conditions and the desired comparison 
solution were obtained by performing a separate integration over a larger domain. 
To set the problem in a meteorological context the north-south and east-west 
dimensions of the larger domain were chosen to coincide respectively with the 
pole-equator distance and half the circumference of the earth at midlatitudes. The 
dimensions of our inner domain and its location relative to the larger domain is 
indicated schematically in Fig. 3. 
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(1, 31) 
c 

(Lo.31: 

b t 

b c 

(1.1) (LO, 1: 

FIG. 3. Schematic diagram of inner and outer integration domains. Grid size indicated at 
bottom left of each domain. Periodic boundary conditions applied at boundaries ‘b’ and wall 
boundaries at ‘c’. 

The initial conditions for these experiments when referred to the larger domain 
are given by, 

Type 1. 

u = U,, - mA sin lx cos my 

v = IA cos Ix sin my 

#J = A{ J’ + rnp(P + m”)-‘1 sin Ix cos my 

+ (l/4) A2(m2 cos 21x + I2 cos 2my) - @Uoy2. 

The Coriolis parameter is given by 

f = f, + /Iy , with& = 1 . 3 x lo-* set-I, 

and U,, and A represent respectively the uniform velocity of the zonal flow and the 
amplitude of the Rossby wave. Choosing 

then 
Al = 3. lo5 m, At = 600 set 

I = 2n-p/38(Ai) m-l 

m = rq/3O(AZ) 

with p and q assuming integer values. The pattern corresponds to a Rossby wave 
with a planetary wavenumber 2p 
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Type 2. 

u-u=Oforalli,j 

v/g = 5200{1 + (l/5) sin[n(i - 15) k/11] sin[r(j - 10) &/Ill 
for 16 < i < 25, I 1 < j < 20, 

= 5200 elsewhere. 

Details of the experiments carried out with these two types of initial conditions 
are presented in Table 1. The time development of RMS error height for the 

TABLE 1 
Experiments Undertaken with the Shallow Water Equations 

Exp. no. Type 

Initial conditions Boundary Integration 
A x 10’ #E x lo-” conditions time 

(m se@) (m” set-I) (m-l set-‘) (P, 9) (Set) 04 

la, lb 1 20 4 1.619 2, 1 A, B 48 
2a, 2b 1 20 2 1.619 4,1 A, B 48 
3 1 15 2 0 2,4 B 48 
4a,4b 2 - - -- AB 8 

various experiments are portrayed in Fig. 4. For the experiments conducted with 
the Set A conditions two curves (t and nt) are drawn corresponding to trivial and 
nontrivial overspecification of the height field at inflow boundary points. The 
height field for the (nt) cases was determined by performing a spatial average of 
the correct (t) values with the formula ynt = vt + t~V~q+ with p = 0.15, 

e 
Ttme Chrs) 

W (b) cc ) 

FIG. 4. Development in time of the RMS error height field in the limited domain integrations 
for the experiments conducted with the two dimensional shallow water equations. These ex- 
periments are listed in Table 1. 



INITIAL-BOUNDARY VALUE FLOW PROBLEMS 419 

-X -X 
FIG. 5. FIG. 5. Height field at t = 0 (solid line) and t = 24 hr (dashed line) Height field at t = 0 (solid line) and t = 24 hr (dashed line) 

two-dimensional shallow water equations. Contours at intervals of 300 two-dimensional shallow water equations. Contours at intervals of 300 
for experiment 1 with the 
m. 

(4 

FIG. 6. (a), (b), (c): Height field in the limited domain at t = 0, 24, 48 hr, respectively, for 
experiment 3. Contours at intervals of 150 m. (d) Error height field in the limited domain after 
48 hr. Contours at intervals of 10 m. 
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The controlled behavior of the (nt) experimental runs is a hopeful indication 
that the generalization of the Set A conditions to the baroclinic primitive equations 
suggested in [18] may be operationally useful. The RMS error velocity fields were 
of the order of, or less than, 1.0 m see-r at the termination of all the integrations. 

Figures 5 and 6 depict the developemnt of the height field of the fluid in the 
inner domain during the execution of experiments 1 b and 3, together with the final 
spatial distribution of the error height field. The last figure indicates that com- 
paratively, small scale, closed lows pass successfully into and out from the inner 
domain during the integration. ,---. / \ / \ / ,---, \ / / \’ ‘I \ \ / - I/ ,I . \ -\ ’ \ 1 

/ I I 

I 1 
: 

\, \ 0 \ 
I 

\ : / 
\ 

-2 / 

\ -\ 
/I 

\ co 
\ 

\ ' 2 ,/I 
\ 

.--- 
/ 

I 
\ /’ \ / L--M’ 

FIG. 7. Height field at r = 0 (solid line) and t = 8 hr (dashed line) for Type 2 initial condi- 
tions. Contours at intervals of 300 m. 

V. CONCLUSIONS AND FURTHER REMARKS 

The results of the three sets of experiments undertaken are encouraging. They 
indicate that the semiimplicit boundary differencing technique is an acceptable 
formulation for the particular interior differencing schemes considered herein. 
The technique does not appear to engender boundary instabilities. We also con- 
clude that the energy method of analyzing the properties of difference schemes 
constitutes an useful approach to formulating the boundary difference schemes 
for the “open” IBV problem. 

We have set our treatment of the JBV problem for open systems within a formal 
mathematical framework. However, it is important to note the practical restrictions 
that arise from a consideration of the nature of the morphism formed by the real 
flow and model equations. 
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We have already indicated that for typical geophysical flow applications the 
boundary data for the limited area models will be acquired from larger models 
with coarser mesh lengths. Thus there will be errors in the specified boundary data 
arising from the differing numerical properties of the two models. In contrast in 
our numerical experiments the values of the specified variables at the lateral 
boundaries were generally free of this source of error. 

However this technique of obtaining boundary data for the IBV problem also 
has a serious physical drawback. Atmospheric and oceanic motion comprise of an 
assemblage of interacting circulation systems with a wide spectrum of spatial and 
temporal scales. The a priori specification of the lateral boundary conditions 
severely disrupts the interaction between the larger scale motion and the limited 
area scale although the problem remains well posed mathematically. Ideally the 
two models with their differing spatial resolutions should be dynamically coupled. 

On the other hand, global coverage of meteorological data for a given time is 
invariably acquired sequentially with the data for the local region being supplied 
first. Hence, there remains some advantage in using a “decoupled” boundary 
technique for short range limited area forecasts. 

APPENDIX: ON THE UNIQUENESS OF SOLUTIONS OF THE 
SHALLOW WATER EQUATIONS 

We first replace the height field h in system C with a new dependent variable c 
(c” = g/z). We note that suitable authentic manipulation and rearrangement of the 
transformed versions of Eqs. (lc) yields the following slightly redundant set: 

with similar equations for (u + 2c) and (v - 2~). 
Proceeding as in [IS], we can derive the following integral inequality, 

& SI, W2 + 4~‘~) ds < ~4 jj s (v’2 + 4c’2) + I M3) 

with 

I = - 
I 

c {&(O . n - E)(v’ 1 n - 2c’)2 

+ $(6 * n + c”)(v’ * n + 2~‘)~ + G * n(v’ * t)2} dc, 

(Al) 

642) 

CA4) 
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where v’ = 4 - v and c’ = E - c are the perturbation variables of the two 
solutions (v, c) and (%?, Z), M is a positive constant with a value depending upon 
the magnitude of the spatial derivatives of both the velocity and geopotential 
fields, and (t, II) denote unit vectors in the tangential and outward normal 
directions to the curve c enclosing the area S. 

It follows from Eqs. (A3) and (A4) that if the two flow fields are identical 
initially (v’ = c’ = 0) and A4 remains finite, then the two flow fields remain 
indistinguishable if {v * n - 2c) is specified everywhere on C and the tangential 
velocity is specified at inflow points. 
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